If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36y^2+13y-14=0
a = 36; b = 13; c = -14;
Δ = b2-4ac
Δ = 132-4·36·(-14)
Δ = 2185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{2185}}{2*36}=\frac{-13-\sqrt{2185}}{72} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{2185}}{2*36}=\frac{-13+\sqrt{2185}}{72} $
| 9(2x-17+9)=8(18) | | 2/3x-4/3=2/3 | | 4x/12=-14 | | 17t-5(2-3t)=18 | | 7x+6/3+5x-1/8=-7 | | 15+r=21 | | 23=x/6+4 | | 3(2y-7)=5y-3 | | 5-(3x+4)=3(2-5x) | | 3.8x-(-9-9.7x)=2.6+13.3x | | -7x3x+2=-8x-8 | | A=2x+200/x | | d=49−2 | | A=2x+200 | | 3x+5=2/2x+3 | | y=2y-6 | | 8-3(6x+8)=7x+3x | | v/4+12=29 | | 9b^-22=-10b | | 15x-4x2=0 | | 10n=n+6 | | 4x-9x=-7 | | 50x+17=27 | | 4x+33=81 | | 4x+6.4=2x-6 | | 35/7=15/x | | 3/5x=2,880,000 | | d/21=4/3 | | 2x-81=180 | | 4r-18=20+1÷5r | | 8^(2x-5)=48 | | x/12-1=6 |